To begin, load the package.
Perform automatic variable selection using a smooth information criterion.
fit <- smoothic(
formula = lcmedv ~ .,
data = bostonhouseprice2,
family = "sgnd", # Smooth Generalized Normal Distribution
model = "mpr" # model location and scale
)
Display the estimates and standard errors.
summary(fit)
#> Call:
#> smoothic(formula = lcmedv ~ ., data = bostonhouseprice2, family = "sgnd",
#> model = "mpr")
#> Family:
#> [1] "sgnd"
#> Model:
#> [1] "mpr"
#>
#> Coefficients:
#>
#> Location:
#> Estimate SE Z Pvalue
#> intercept_0_beta 3.61487398 0.10276515 35.1761 < 2.2e-16 ***
#> crim_1_beta -0.01966869 0.00485003 -4.0554 7.391e-05 ***
#> zn_2_beta 0 0 0 0
#> indus_3_beta 0 0 0 0
#> rm_4_beta 0.23420795 0.01674201 13.9892 < 2.2e-16 ***
#> age_5_beta -0.00106469 0.00037756 -2.8199 0.0032749 **
#> rad_6_beta 0.00872888 0.00225009 3.8794 0.0001322 ***
#> ptratio_7_beta -0.02576656 0.00284079 -9.0702 3.928e-14 ***
#> lnox_8_beta -0.27952994 0.08742682 -3.1973 0.0011070 **
#> ldis_9_beta -0.15876816 0.02377214 -6.6787 3.053e-09 ***
#> ltax_10_beta -0.18566174 0.03298377 -5.6289 2.356e-07 ***
#> llstat_11_beta -0.17089617 0.02526373 -6.7645 2.112e-09 ***
#> chast_12_beta 0.05037052 0.01949714 2.5835 0.0062559 **
#>
#> Scale:
#> Estimate SE Z Pvalue
#> intercept_0_alpha -9.650781 2.212211 -4.3625 2.592e-05 ***
#> crim_1_alpha 0.017943 0.015786 1.1366 0.1709230
#> zn_2_alpha 0 0 0 0
#> indus_3_alpha -0.033626 0.021922 -1.5339 0.0775463 .
#> rm_4_alpha -0.171268 0.103700 -1.6516 0.0602066 .
#> age_5_alpha 0 0 0 0
#> rad_6_alpha 0.032485 0.017919 1.8129 0.0420818 *
#> ptratio_7_alpha 0 0 0 0
#> lnox_8_alpha 0 0 0 0
#> ldis_9_alpha -0.973190 0.228854 -4.2524 3.798e-05 ***
#> ltax_10_alpha 1.376569 0.389562 3.5336 0.0003973 ***
#> llstat_11_alpha 0 0 0 0
#> chast_12_alpha 0 0 0 0
#>
#> Shape:
#> Estimate SE Z Pvalue
#> intercept_0_nu 0.29278 0.10525 2.7817 0.00364 **
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Kappa Estimate:
#> [1] 1.540152
#> Penalized Likelihood:
#> [1] 223.5697
#> IC Value:
#> [1] -447.1393
fit$kappa # shape estimate
#> [1] 1.540152
Plot the standardized coefficient values with respect to the epsilon-telescope.
Plot the model-based conditional density curves.
plot_effects(fit,
what = c("ltax", "rm", "ldis"), # or "all" for all selected variables
density_range = c(2.25, 3.75))